Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade

Author:

Williams Richard1,Gregory-Smith David1,He Li1,Ingram Grant1

Affiliation:

1. University of Durham, South Road, Durham DH1 3LE, UK

Abstract

Large tip clearances typically in the region of 6% exist in the high pressure (HP) stages of compressors of industrial gas turbines. Due to the relatively short annulus height and significant blockage, the tip clearance flow accounts for the largest proportion of loss in the HP. Therefore increasing the understanding of such flows will allow for improvements in design of such compressors, increasing efficiency, stability, and the operating range. Experimental and computational techniques have been used to increase the physical understanding of the tip clearance flows through varying clearances in a linear cascade of controlled-diffusion blades. This paper shows two unexpected results. First the loss does not increase with clearances greater than 4% and second there is an increase in blade loading toward the tip above 2% clearance. It appears that the loss production mechanisms of the pressure driven tip clearance jet do not increase as the clearance is increased to large values. The increase in blade force is attributed to the effect of the strong tip clearance vortex, which does not move across the blade passage to the pressure surface, as is often observed for high stagger blading. These results may be significant for the design of HP compressors for industrial gas turbines.

Publisher

ASME International

Subject

Mechanical Engineering

Reference18 articles.

1. Denton, J. D. , 1993, “Loss Mechanisms in Turbomachines,” ASME Paper No. 93-GT-435.

2. Williams, R. J., Gregory-Smith, D., and He, L., 2006, “A Study of Large Tip Clearance Flows in an Axial Compressor Blade Row,” ASME Paper No. GT2006-90463.

3. A Study of Large Tip Clearance in a Row of Low Speed Compressor Blades;Walker

4. A Review of Turbomachinery Tip Gap Effects: Part 1: Cascades;Peacock;Int. J. Heat Fluid Flow

5. Tip Leakage Flow in Axial Compressors;Storer;ASME J. Turbomach.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3