A DLM-LSTM Framework for North-South Land Deformation Trend Analysis from Low-Cost GPS Sensor Time Series

Author:

Pu Fangling12ORCID,Xu Zhaozhuo3,Chen Hongyu1,Xu Xin1,Chen Nengcheng4ORCID

Affiliation:

1. School of Electronic Information, Wuhan University, Wuhan, Hubei 430072, China

2. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, Hubei 430079, China

3. Electrical Engineering Department, Stanford University, Palo Alto, CA 94305, USA

4. State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, Hubei 430079, China

Abstract

Landslides endanger regular industrial production and human safety. Displacement trend analysis gives us an explicit way to observe and forecast landslides. Although satellite-borne remote sensing methods such as synthetic aperture radar have gradually replaced manual measurement in detecting deformation trends, they fail to observe displacement in a north-south direction. Wireless low-cost GPS sensors have been developed to assist remote sensing methods in north-south deformation monitoring because of their high temporal resolution and wide usage. In our paper, a DLM-LSTM framework is developed to extract and predict north-south land deformation trends from meter accuracy GPS receivers. A dynamic linear model is introduced to model the relation between measurement and the state vector, including the trend, periodic variation, and autoregressive factors in a discontinuous low-cost latitude time series. The deformation trend with submeter-level accuracy is extracted by a Kalman filter and smoother. With validated input as in previous work, the power of an LSTM network is also shown in its ability to predict deformation trends in submeter-level accuracy. A submeter-level deformation trend is detected from wireless low-cost GPS sensors with meter-level navigation error. The framework will have broad application prospects in geological disaster monitoring.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3