Ultra-short-term prediction of LOD using LSTM neural networks

Author:

Gou JunyangORCID,Kiani Shahvandi MostafaORCID,Hohensinn RolandORCID,Soja BenediktORCID

Abstract

AbstractEarth orientation parameters (EOPs) are essential in geodesy, linking the terrestrial and celestial reference frames. Due to the time needed for data processing and combining different space geodetic techniques, EOPs of the highest quality suffer latencies from several days to several weeks. However, real-time EOPs are needed for multiple geodetic and geophysical applications. Predictions of EOPs in the ultra-short term can overcome the latency of EOP products to a certain extent. Traditionally, predictions are performed using statistical methods. With the rapid expansion of computing capacity and data volume, the application of deep learning in geodesy has become increasingly promising in recent years. In particular, the Long Short-Term Memory (LSTM) neural networks, one of the most popular Recurrent Neural Network varieties, are promising for geodetic time series prediction. In this study, we investigate the potential of using LSTM to predict daily length of day (LOD) variations up to ten days in advance, accounting for the contribution of effective angular momentum (EAM). The data are first preprocessed to obtain residuals by combining physical and statistical models. Then, we employ LSTM networks to predict the LOD residuals using both LOD and EAM residuals as input features. Our methods outperform all other state-of-the-art methods in the first eight days with an improvement of up to 43% under the first EOP Prediction Comparison Campaign conditions. In addition, we assess the performance of LOD predictions using more extended time series to consider the improvements of EOP products over the last decade. The results show that extending data volume significantly increases the performance of the methods.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Reference59 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3