Affiliation:
1. School of Information and Engineering, Chang’an University, Xi’an 710064, China
2. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an 710043, China
3. School of Highway, Chang’an University, Xi’an 710064, China
Abstract
The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.
Funder
National Key R&D Program of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献