Prediction Model of Juvenile Football Players’ Sports Injury Based on Text Classification Technology of Machine Learning

Author:

He Kai1ORCID

Affiliation:

1. College of Sports Science and Technology of Wuhan Sports University, Wuhan 430079, Hubei, China

Abstract

As the level of soccer in our country has improved rapidly, the level of skill has gradually improved, and the requirements for training of athletes have increased. Due to changes in athlete training methods, it has been decided that athletes must bear a great risk of sports injuries. Accurate prediction of injuries is very important for the development of youth soccer. Based on this, this paper proposes a text classification algorithm based on machine learning and builds a sports injury prediction model that can accurately predict athlete injuries, reduce athlete injuries during training, and be effective. We put forward various sports suitable for young athletes, and put forward some measures to prevent and alleviate athletes’ injuries. This article selects 48 football players from a college of physical education of a university for testing. The athletes participating in the experiment use professional equipment to collect exercise volume and exercise load data, and real-time records of each athlete's physical fitness data within half a year, through the athlete's exercise volume, exercise load, body metabolism, and physical indicators to predict their sports injury. Experiments show that from the degree of injury, it can be seen that the severe injury is the least, with 5 cases of muscle injury, 2 cases of fascia ligament injury, and 1 case of joint injury. There were 25 cases of mild injuries, accounting for 41.0% of the total. This is because the athlete’s sports injury prediction model has better prediction capabilities, allowing athlete coaches and therapists to optimize training courses, ultimately preventing injuries, improving training levels, and reducing rehabilitation costs.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference27 articles.

1. Application of Spark parallelization technology in architectural text classification

2. Feature selection method based on statistics of compound words for Arabic text classification;A. Adel;The International Arab Journal of Information Technology,2019

3. Artificial bee colony algorithm for feature selection and improved support vector machine for text classification;B. Janani;Interlending & Document Supply,2019

4. Text classification using artificial neural networks;P. L. Prasanna;International Journal of Engineering & Technology,2018

5. Text classification for student data set using naive bayes classifier and KNN classifier;R. P. Rajeswari;International Journal of Emerging Trends & Technology in Computer Science,2017

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3