Workload Monitoring Tools in Field-Based Team Sports, the Emerging Technology and Analytics used for Performance and Injury Prediction: A Systematic Review

Author:

Keys Georgia1,Ryan Lisa2,Faulkner Maria3,McCann Michael1

Affiliation:

1. 1 Department of computing , Atlantic Technological University (ATU) Letterkenny , Donegal , Ireland

2. 2 Sport, Exercise and Nutrition , ATU , Galway , Ireland

3. 3 Department of sport , ATU, Letterkenny , Donegal , Ireland

Abstract

Abstract Training load (TL) is frequently documented among team sports and the development of emerging technology (ET) is displaying promising results towards player performance and injury risk identification. The aim of this systematic review was to identify ETs used in field-based sport to monitor TL for injury/performance prediction and provide sport specific recommendations by identifying new data generation in which coaches may consider when tracking players for an increased accuracy in training prescription and evaluation among field-based sports. Data was extracted from 60 articles following a systematic search of CINAHL, SPORTDiscus, Web of Science and IEEE XPLORE databases. Global positioning system (GPS) and accelerometers were common external TL tools and Rated Perceived Exertion (RPE) for internal TL. A collection of analytics tools were identified when investigating injury/performance prediction. Machine Learning showed promising results in many studies, identifying the strongest predictive variables and injury risk identification. Overall, a variety of TL monitoring tools and predictive analytics were utilized by researchers and were successful in predicting injury/performance, but no common method taken by researchers could be identified. This review highlights the positive effect of ETs, but further investigation is desired towards a ‘gold standard” predictive analytics tool for injury/performance prediction in field-based team sports.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3