Vehicle Detection and Ranging Using Two Different Focal Length Cameras

Author:

Liu Jun1ORCID,Zhang Rui1ORCID

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, 212013, China

Abstract

Vehicle detection is a crucial task for autonomous driving and demands high accuracy and real-time speed. Considering that the current deep learning object detection model size is too large to be deployed on the vehicle, this paper introduces the lightweight network to modify the feature extraction layer of YOLOv3 and improve the remaining convolution structure, and the improved Lightweight YOLO network reduces the number of network parameters to a quarter. Then, the license plate is detected to calculate the actual vehicle width and the distance between the vehicles is estimated by the width. This paper proposes a detection and ranging fusion method based on two different focal length cameras to solve the problem of difficult detection and low accuracy caused by a small license plate when the distance is far away. The experimental results show that the average precision and recall of the Lightweight YOLO trained on the self-built dataset is 4.43% and 3.54% lower than YOLOv3, respectively, but the computing speed of the network decreases 49 ms per frame. The road experiments in different scenes also show that the long and short focal length camera fusion ranging method dramatically improves the accuracy and stability of ranging. The mean error of ranging results is less than 4%, and the range of stable ranging can reach 100 m. The proposed method can realize real-time vehicle detection and ranging on the on-board embedded platform Jetson Xavier, which satisfies the requirements of automatic driving environment perception.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3