Author:
Liang Hong,Ma Zizhen,Zhang Qian
Abstract
Distance estimation using a monocular camera is one of the most classic tasks for computer vision. Current monocular distance estimating methods need a lot of data collection or they produce imprecise results. In this paper, we propose a network for both object detection and distance estimation. A network-based on ShuffleNet and YOLO is used to detect an object, and a self-supervised learning network is used to estimate distance. We calibrated the camera, and the calibrated parameters were integrated into the overall network. We also analyzed the parameter variation of the camera pose. Further, a multi-scale resolution is applied to improve estimation accuracy by enriching the expression ability of depth information. We validated the results of object detection and distance estimation on the KITTI dataset and demonstrated that our approach is efficient and accurate. Finally, we construct a dataset and conduct similar experiments to verify the generality of the network in other scenarios. The results show that our proposed methods outperform alternative approaches on object-specific distance estimation.
Funder
the Science Foundation of Shandong Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference66 articles.
1. Trained Trajectory based Automated Parking System using Visual SLAM on Surround View Cameras;Tripathi;arXiv,2020
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献