An Automated Approach for the Prediction of the Severity Level of Bug Reports Using GPT-2

Author:

kamal Mohsin1ORCID,Ali Sikandar2ORCID,Nasir Anam1ORCID,Samad Ali3ORCID,Basser Samad4ORCID,Irshad Azeem5ORCID

Affiliation:

1. Department of Computer Science, COMSATS University, Islamabad, Pakistan

2. Department of Information Technology, The University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan

3. Faculty of Computing, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

4. Department of Computer System Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan

5. Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan

Abstract

Manual investigation is warranted in traditional approaches for estimating the bug severity level, which adds to the effort and time required. For bug severity report prediction, numerous automated strategies have been proposed in addition to manual ones. However, the current bug report predictors by facing several issues, such as overfitting and weight computation, and therefore, their efficiency for specific levels of data noise needs to improve. As a result, a bug report predictor is required to solve these concerns (e.g., overfitting and avoiding weight calculation, which increases computing complexity) and perform better in the situation of data noise. We use GPT-2’s features (limiting overfitting and supplying sequential predictors rather than weight computation) to develop a new approach for predicting the severity level of bug reports in this study. The proposed approach is divided into four stages. First, the bug reports are subjected to text preprocessing. Second, we assess each bug report’s emotional score. Third, each report is presented in vector format. Finally, an emotion score is assigned to each bug report, and a vector of each bug report is produced and sent to GPT-2. We employ statistical indicators like recall, precision, and F1-score to evaluate the suggested method’s effectiveness and efficacy. A comparison was also made using state-of-the-art bug report predictors such as Random Forest (RF), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) Network, Support Vector Machine (SVM), XGBoost, and Naive Bayes Multinomial (NBM). The proposed method’s promising result indicates its efficacy in bug information retrieval.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3