Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions

Author:

Olaleye T. O.1ORCID,Arogundade O. T.12ORCID,Misra Sanjay3ORCID,Abayomi-Alli A.1ORCID,Kose Utku4ORCID

Affiliation:

1. Department of Computer Science, Federal University of Agriculture, Abeokuta, Nigeria

2. Department of Mathematical Sciences, Anchor University Lagos, Lagos, Nigeria

3. Department of Computer Science and Communication, Østfold University College, Halden, Norway

4. Department of Computer Engineering, Suleyman Demirel Universitesi, Isparta, Turkey

Abstract

Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a systematic literature review (SLR) on machine learning-based software defect severity prediction was conducted in the last decade. The SLR was aimed at detecting germane areas central to efficient predictive analytics, which are seldom captured in existing software defect severity prediction reviews. The germane areas include the analysis of techniques or approaches which have a significant influence on the threats to the validity of proposed models, and the bias-variance tradeoff considerations techniques in data science-based approaches. A population, intervention, and outcome model is adopted for better search terms during the literature selection process, and subsequent quality assurance scrutiny yielded fifty-two primary studies. A subsequent thoroughbred systematic review was conducted on the final selected studies to answer eleven main research questions, which uncovers approaches that speak to the aforementioned germane areas of interest. The results indicate that while the machine learning approach is ubiquitous for predicting software defect severity, germane techniques central to better predictive analytics are infrequent in literature. This study is concluded by summarizing prominent study trends in a mind map to stimulate future research in the software engineering industry.

Funder

Østfold University College

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3