An Empirical Comparison of Machine Learning Techniques in Predicting the Bug Severity of Open and Closed Source Projects

Author:

Chaturvedi K. K.1,Singh V.B.2

Affiliation:

1. Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India

2. Delhi College of Arts & Commerce, University of Delhi, New Delhi, Delhi, India

Abstract

Bug severity is the degree of impact that a defect has on the development or operation of a component or system, and can be classified into different levels based on their impact on the system. Identification of severity level can be useful for bug triager in allocating the bug to the concerned bug fixer. Various researchers have attempted text mining techniques in predicting the severity of bugs, detection of duplicate bug reports and assignment of bugs to suitable fixer for its fix. In this paper, an attempt has been made to compare the performance of different machine learning techniques namely Support vector machine (SVM), probability based Naïve Bayes (NB), Decision Tree based J48 (A Java implementation of C4.5), rule based Repeated Incremental Pruning to Produce Error Reduction (RIPPER) and Random Forests (RF) learners in predicting the severity level (1 to 5) of a reported bug by analyzing the summary or short description of the bug reports. The bug report data has been taken from NASA’s PITS (Projects and Issue Tracking System) datasets as closed source and components of Eclipse, Mozilla & GNOME datasets as open source projects. The analysis has been carried out in RapidMiner and STATISTICA data mining tools. The authors measured the performance of different machine learning techniques by considering (i) the value of accuracy and F-Measure for all severity level and (ii) number of best cases at different threshold level of accuracy and F-Measure.

Publisher

IGI Global

Subject

Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bug summary entropy based training candidates identification in cross project severity prediction;International Journal of System Assurance Engineering and Management;2023-11-06

2. Evaluating the Veracity of Software Bug Reports using Entropy-based Measures;International Journal of Open Source Software and Processes;2022-12-09

3. An Automated Approach for the Prediction of the Severity Level of Bug Reports Using GPT-2;Security and Communication Networks;2022-05-29

4. Developing bug severity prediction models using word2vec;International Journal of Cognitive Computing in Engineering;2021-06

5. Predicting the Severity of Open Source Bug Reports Using Unsupervised and Supervised Techniques;Research Anthology on Usage and Development of Open Source Software;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3