Affiliation:
1. School of Automation Science and Electrical Engineering, Beihang University, 100191 Beijing, China
Abstract
With growing worldwide interests in commercial, scientific, and military issues, there has been a corresponding rapid growth in demand for the development of unmanned aerial vehicles (UAVs) with more reliable and safer motion control abilities. This paper presents a new nonlinear path following scheme integrated with a heading control law for achieving accurate and reliable path following performance. Both backstepping and finite-time techniques are employed for developing the path following and heading control strategies capable of minimizing cross-track errors in finite-time with elegant transient performance, while the barrier Lyapunov function scheme is adopted to limit turning rates of the UAV for preventing it from capsizing which may be induced by overquick steering actions. A fixed-time nonlinear estimator, based on UAV kinematics, is designed for estimating the uncertainties with sideslip angles caused by external disturbances and inertial motions. To avoid the complicated calculation of derivatives of virtual control terms in backstepping, command filters and auxiliary systems are likewise introduced in the design of control laws. Extensive numerical simulation studies on a nonlinear UAV model are conducted to demonstrate the effectiveness of the proposed methodologies.
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献