Fault Diagnosis of Spindle Device in Hoist Using Variational Mode Decomposition and Statistical Features

Author:

Gu Jun1,Peng Yuxing12ORCID,Lu Hao12,Cao Shuang1,Cao Bobo1

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

Abstract

By analyzing nonlinear and nonstationary vibration signals from the spindle device of the mine hoist, it is a challenge to overcome the difficulty of fault feature extraction and accurately identify the fault of rotor-bearing system. In response to this problem, this paper proposes a new approach based on variational mode decomposition (VMD), SVM, and statistical characteristics such as variance contribution rate (VCR), energy entropy (EE), and permutation entropy (PE). Comparisons have gone to evaluate the performance of rolling bearing defect by using EMD (Empirical Mode Decomposition), MEEMD (Modified Ensemble EMD), BP (Back Propagation) network, single or multiple statistical characteristics, and different motor loads. The experiment was carried out on the mechanical failure simulator of the main shaft device of the hoist, which verified the reliability and effectiveness of the method. The results show that the diagnosis method is suitable for feature extraction of bearing fault signals, with the highest diagnosis accuracy. It can provide a good practical reference for the fault diagnosis of mechanical equipment of the hoist spindle device and has certain practical value.

Funder

National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3