Prediction of runner eccentricity and Alford force of a Kaplan turbine based on variational mode decomposition

Author:

Hu Zilong1,Liu Qiang1,Wang Xiaohang234,Fang Mingkun1,Chen Taiping234,Tao Ran125ORCID,Ding Junfeng234,Zhu Di6,Xiao Ruofu15ORCID,Wang Huanmao234

Affiliation:

1. College of Water Resources and Civil Engineering China Agricultural University Beijing China

2. State Key Laboratory of Hydro‐Power Equipment Harbin China

3. Harbin Electric Machinery Company Limited Harbin China

4. Harbin Institute of Large Electric Machinery Harbin China

5. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System China Agricultural University Beijing China

6. College of Engineering China Agricultural University Beijing China

Abstract

AbstractThe rotor blades of an axial‐flow turbine are cantilever structures, and there is inevitably a gap between them and the casing. Due to factors such as rotor wear and unit vibration, the eccentricity of the impeller will change during the operation of the turbine, resulting in the impeller being affected by additional radial forces, which can even lead to rubbing or biting between the impeller and the casing. To monitor the eccentricity of the impeller and the additional radial forces in real time during the operation of the turbine, this study conducted numerical simulations of the internal flow of the turbine under different eccentricities of the impeller, and analyzed the characteristics of pressure pulsation and impeller radial force in the turbine using the variational mode decomposition method. The results showed that there was a good linear relationship between the eccentricity of the impeller and the amplitude of the frequency corresponding to the rotor in pressure pulsation at the monitoring point and the Alford force acting on the impeller. Based on this finding, we established mathematical formulas for the relationship between the pressure pulsation at the monitoring point and the eccentricity of the impeller, as well as the eccentricity of the impeller and the Alford force acting on it. According to these formulas, we only need to monitor the pressure pulsation during the operation of the turbine to realize the real‐time monitoring of the eccentricity of the impeller and the Alford force, which is of great significance for ensuring the safe and stable operation of the turbine.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3