MHlinker: Research on a Joint Extraction Method of Fault Entity Relationship for Mine Hoist

Author:

Dang Xiaochao12,Deng Han1,Dong Xiaohui12,Zhu Zhongyan3,Li Fenfang2,Wang Li2

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

2. Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China

3. Jinchuan Group Co., Ltd., Longshou Mine, Jinchang 737103, China

Abstract

Triplet extraction is the key technology to automatically construct knowledge graphs. Extracting the triplet of mechanical equipment fault relationships is of great significance in constructing the fault diagnosis of a mine hoist. The pipeline triple extraction method will bring problems such as error accumulation and information redundancy. The existing joint learning methods cannot be applied to fault texts with more overlapping relationships, ignoring the particularity of professional knowledge in the field of complex mechanical equipment faults. Therefore, based on the Chinese pre-trained language model BERT Whole Word Masking (BERT-wwm), this paper proposes a joint entity and relation extraction model MHlinker (Mine Hoist linker, MHlinker) for the mine hoist fault field. This method uses BERT-wwm as the underlying encoder. In the entity recognition stage, the classification matrix is constructed using the multi-head extraction paradigm, which effectively solves the problem of entity nesting. The results show that this method enhances the model’s ability to extract fault relationships as a whole. When the small-scale manually labeled mine hoist fault text data set is tested, the extraction effect of entities and relationships is significantly improved compared with several baseline models.

Funder

National Natural Science Foundation of China

Industrial Support Foundations of Gansu

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3