Investigation of an Underwater Vectored Thruster Based on 3RPS Parallel Manipulator

Author:

Liu Tao1,Hu Yuli2ORCID,Xu Hui1ORCID,El Ghami Mohamed

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Autonomous underwater vehicles (AUVs) are important and useful tool platforms in exploring and utilizing ocean resource. However, the effect of control surfaces would decrease even invalid complete in this condition, and it is very hard for conventional AUVs to perform detailed missions at a low forward speed. Therefore, solving this problem of AUVs becomes particularly important to increase the application scope of AUVs. In this paper, we present a design scheme for the vectored thruster AUV based on 3RPS parallel manipulator, which is a kind of parallel manipulator and has advantages of compact structure and reliable performance. To study the performance and characteristics of the proposed thrust-vectoring mechanism, a series of works about corresponding kinematic and dynamic analysis have been performed through the theoretical analysis and numerical simulation. In the part of kinematics, the inverse, forward kinematics, and workspace analysis of the thrust-vectoring mechanism is presented, and the numerical simulations are accomplished to prove the feasibility and effectiveness of this design in AUVs. In order to further verify feasibility of the thrust-vectoring mechanism, based on the considerations of various affecting factors, a dynamic model of the designed thrust-vectoring mechanism is established according to theoretical analysis, and the driving forces of the linear actuator are presented through a series of numerical simulations. In addition, a control scheme based on PID algorithm is proposed for the designed vectored thruster with considering various affecting factors and the application environment. Meanwhile, the control scheme is also established and verified in MATLAB Simscape Mutibody. A series of numerical simulations of the thrust-vectoring mechanism prove the feasibility of the vectored thruster. According to equipping the designed vectored thruster, the AUVs can overcome the limit of weakening the control ability at zero or low forward speeds, and this improvement also expands the application of it, which has been scaled greatly.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3