A Comparative Study of Impeller Modification Techniques on the Performance of the Pump as a Turbine

Author:

Nasir Abdulbasit1ORCID,Dribssa Edessa2ORCID,Girma Misrak13ORCID,Demeke Tamerat2ORCID

Affiliation:

1. Department of Mechanical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia

2. School of Mechanical and Industrial Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O. Box 385, Addis Ababa, Ethiopia

3. Renewable Energy Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia

Abstract

The extensive use of the pump as a turbine (PAT) for micro-hydropower applications has a significant value from economic and technical viewpoints. However, the unavailability of the characteristics curve and relatively lower efficiency are the two basic limitations when considering pumps for power-generating applications. In this paper, the performance of the PAT is analyzed using the computational fluid dynamics (CFD) software called Ansys CFX in conjunction with standard k - ε . Then, experiments were done to verify the results of the simulation. Measurement inaccuracy effects are also taken into account. The initial performance of the PAT is refined by controlling basic design parameters (i.e., increasing the number of impeller blades, decreasing blade thickness, blade tip rounding, and adjusting blade inlet angle). Additionally, a new modification method known as blade grooving is also introduced in this research. Finally, all listed modification techniques are applied simultaneously to achieve maximum performance. The output of the study confirms that the adopted modification techniques have a positive effect on performance improvement. When the number of impellers is increased, the power output is enhanced by 5.72%, and blade grooving provides the most efficiency improvement, i.e., 7.00%. But decreasing blade thickness has no remarkable impact on the performance; the power output and efficiency are improved by 1.24% and 2.60%, respectively. The maximum performance improvement was achieved when the modification techniques are applied simultaneously with 10.56 and 10.20 percent of power and efficiency increments, respectively. From the entire study, it can be concluded that the chosen design parameters have an important effect on stabilizing the internal flow, decreasing the required head, decreasing the hydraulic loss in the impeller, and increasing the overall performance. The study also helps to figure out which modification technique is the most practical.

Funder

Adama Science and Technology University

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3