Flow Conditions for PATs Operating in Parallel: Experimental and Numerical Analyses

Author:

Simão Mariana,Pérez-Sánchez Modesto,Carravetta Armando,Ramos Helena

Abstract

Micro-hydro systems can be used as a promising new source of renewable energy generation, requiring a low investment cost of hydraulic, mechanical, and electrical equipment. The improvement of the water management associated with the use of pumps working as turbines (PATs) is a real advantage when the availability of these machines is considered for a wide range of flow rates and heads. Parallel turbomachines can be used to optimize the flow management of the system. In the present study, experimental tests were performed in two equal PATs working in parallel and in single mode. These results were used to calibrate and validate the numerical simulations. The analysis of pressure variation and head losses was evaluated during steady state conditions using different numerical models (1D and 3D). From the 1D model, the installation curve of the system was able to be defined and used to calculate the operating point of the two PATs running in parallel. As for the computational fluid dynamics (CFD) model, intensive analysis was carried out to predict the PATs′ behavior under different flow conditions and to evaluate the different head losses detected within the impellers. The results show system performance differences between two units running in parallel against a single unit, providing a greater operational flow range. The performance in parallel design conditions show a peak efficiency with less shock losses within the impeller. Furthermore, by combining multiple PATs in parallel arrangement, a site’s efficiency increases, covering a wide range of applications from the minimum to the maximum flow rate. The simulated flow rates were in good agreement with the measured data, presenting an average error of 10%.

Funder

Interreg

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3