Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications

Author:

Nasir Abdulbasit12ORCID,Dribssa Edessa3,Girma Misrak14ORCID,Madessa Habtamu Bayera5

Affiliation:

1. Department of Mechanical Engineering, Collage of Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia

2. Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Hawassa P.O. Box 05, Ethiopia

3. School of Mechanical and Industrial Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia

4. Sustainable Energy Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia

5. Department of Built Environment, Oslo Metropolitan University, Pilestredet 35, St. Olavs Plass, P.O. Box 4, 0130 Oslo, Norway

Abstract

The high price of purpose-made turbines always represents an active challenge when utilizing pico- and micro-hydropower resources. Pumps as turbines (PATs) are a promising option to solve the problem. However, the selection of a suitable pump for a specific site and estimating its performance in the reverse mode are both major problems in the field. Therefore, this paper aims to develop generic mathematical correlations between the site and the pump hydraulic data, which can be used to select the optimal operation of the pump as a turbine. A statistical model and the Pearson correlation coefficient formula were employed to generate correlations between the flow rate and the head of the pumps with the sites. Then, Ansys CFX, coupled with SST k-ω and standard k-ε turbulence models, was used to analyze the performance of the PAT. The analysis was conducted in terms of flow rate, pressure head, efficiency, and power output. The numerical results were validated using an experimental test rig. The deviations of the proposed correlations from the statistical model were found to be in the range of −0.2% and 1.5% for the flow rate and ±3.3% for the pressure head. The obtained numerical outputs using the standard k-ε turbulence model strongly agreed with the experimental results, with variations of −1.82%, 2.94%, 2.88%, and 1.76% for the flow rate, head, power, and efficiency, respectively. The shear stress transport (SST) k-ω turbulence model showed relatively higher deviations when compared to standard k-ε. From the results, it can be concluded that the developed mathematical correlations significantly contribute to selecting the optimal operation of the pump for power-generating applications. The adopted numerical procedure, selected mesh type, turbulence model, and physics setup provided good agreement with the test result. Among the two turbulence models, the standard k-ε performs better in estimating the pressure head, output power, and efficiency of the PAT with less than 3% errors when compared to experimental results.

Funder

Addis Ababa Science and Technology University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3