Turbulence Modeling Using Z-F Model and RSM for Flow Analysis in Z-SHAPE Ducts

Author:

Karbon Mohammed1ORCID,Sleiti Ahmad K.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, College of Engineering, University of Qatar, P.O. Box 2713, Doha, Qatar

Abstract

Turbulent flow in Z-shape duct configuration is investigated using Reynolds stress model (RSM) and ζ-f model and compared to experimental results. Both RSM and ζ-f models are based on steady-state RANS solutions. The focus was on regions where the RSM has over- or underpredicted the flow when compared to the experimental results and on regions where there are flow separations and high turbulence. The performance of predicting the flow reattachment length in each model is studied as well. RSM has shown the mean flow velocity profile results match reasonably well with the experiment. Advanced ζ-f turbulence model is introduced as user-defined function (UDF) code and applied to the Z-shape duct. It is found that the turbulent kinetic energy production in ζ equation is much easier to reproduce accurately. Both mean velocity gradient and local turbulent stress terms are also much easier to be resolved properly. The current research has found that not only ζ-f model takes less time to complete the simulation but also the mean flow velocity profile results are in better agreement with the experimental data than the RSM although both are coupled steady-state RANS. ζ-f model numerically resolved both the flow separation and reattachment regions better than the RSM. The current numerical results from ζ-f model are attractive and encouraging for wall-bounded flow applications where flow separation and flow reattachment are important for the flow mechanism.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3