Investigation of the Aerodynamic Performance of the Miller Cycle from Transparent Engine Experiments and CFD Simulations

Author:

Perceau MarcellinORCID,Guibert PhilippeORCID,Clenci AdrianORCID,Iorga-Simăn Victor,Niculae Mihai,Guilain StéphaneORCID

Abstract

This paper assesses the effect of the Miller cycle upon the internal aerodynamics of a motored transparent spark ignition engine via CFD simulation and particle image velocimetry. Since the transparent Miller engine does not allow for measurements in the roof of the combustion chamber, the extraction of information regarding the aerodynamic phenomena occurring here is based on CFD simulation, i.e., the results of the CFD simulation are used to allow for the extrapolation of the experimental data; thus, they are used to complete the picture regarding the aerodynamic phenomena occurring inside the whole cylinder. The results indicate that implementing the early intake valve closing strategy to obtain the Miller cycle has a negative impact on the mean kinetic energy, turbulent kinetic energy, and fluctuating velocity toward the end of the compression stroke, thus affecting, the combustion process. This supports the need to intensify the internal aerodynamics when applying the Miller cycle such that the turbulence degradation is not too big and, consequently, to still gain efficiency in the Miller cycle.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference44 articles.

1. Miller cycle. Engine;Miller;U.S. Patent,1957

2. Investigations on the Potential of Miller Cycle for Performance Improvement of Gas Engine;Mo;Glob. J. Res. Eng. B Automot. Eng.,2016

3. Influence of Miller Cycles on Engine Air Flow

4. Experimental study on the effects of the Miller cycle on the performance and emissions of a downsized turbocharged gasoline direct injection engine

5. Application of the Miller cycle to reduce NOx emissions from petrol engines

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3