Experimental study on the effects of the Miller cycle on the performance and emissions of a downsized turbocharged gasoline direct injection engine

Author:

Huang Zhao-Ming12ORCID,Shen Kai3,Wang Li24,Chen Wei-Guo5,Pan Jin-Yuan5

Affiliation:

1. School of Mechanical Engineering, Wanjiang University of Technology, Ma’anshan, China

2. Ma’anshan Engineering Technology Research Center of Advanced Design for Automotive Stamping Dies, Ma’anshan, China

3. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

4. Xuancheng Vocational & Technical College, Xuancheng, China

5. Automotive Engineering & Technology Research Institute, Chery Automobile Co., Ltd, Wuhu, China

Abstract

The Miller cycle has been proven to be an effective way to improve the thermal efficiency for gasoline engines. However, it may show insufficient power performance at certain loads. In this study, the objective is to exploit the advantages of the Miller-cycle engines over the original Otto-cycle engines. Therefore, a new camshaft profile with early intake valve closure was devised, and two various pistons were redesigned to obtain higher compression ratio 11.2 and 12.1, based on the original engine with compression ratio 10. Then, a detailed comparative investigation of the effects of Miller cycle combined with higher compression ratio on the performance and emission of a turbocharged gasoline direct injection engine has been experimentally carried out based on the engine bench at full and partial loads, compared to the original engine. The results show that, at full load, for a turbocharged gasoline direct injection engine utilizing the Miller cycle, partial maximum power is compromised about 1.5% while fuel consumption shows a strong correlation with engine speed. At partial load, since the Miller effect can well reduce the pumping mean effective pressure, thus improves the fuel economy effectively. In addition, the suppression of the in-cylinder combustion temperature induced by the lower effective compression ratio contributes to the reduction of nitrogen oxide emission greatly. However, the total hydrocarbon emission increases slightly. Therefore, a combination of the Miller cycle and highly boosted turbocharger shows great potential in further improvement of fuel economy and anti-knock performance for downsized gasoline direct injection engines.

Funder

National Natural Science Foundation of China

Key projects of Natural Science Research of Anhui Provincial Department of Education

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3