Construction Sequence Optimization and Settlement Control Countermeasures of Metro Tunnels Underpassing Expressway

Author:

Zhang Chengzhong12ORCID,Zhang Qiang12ORCID,Pei Ziming12ORCID,Song Zhanping12ORCID,Wang Junbao12ORCID

Affiliation:

1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi'an, Shaanxi 710055, China

Abstract

The Chongqing metro line 6 underpass expressway around the city is taken as an engineering background, and the optimal excavation sequence and corresponding control countermeasures for the triangular-distributed three-line metro tunnel underpass expressway are studied. The influences of excavation sequence on the tunnel surrounding rock deformation, surrounding rock stress, supporting structure stress, plastic zone, and surface settlement are analyzed by using MIDAS/GTS NX finite element software. The numerical simulation results showed that Case 1 is the optimal excavation sequence of the metro tunnel. However, the surface settlement under the optimal excavation sequence exceeds the limit value of 30 mm, which cannot guarantee the safety of expressway traffic. On this basis, the control measure for strengthening the three-line tunnels with advanced small pipe grouting and reinforcing the middle tunnel with concrete-filled steel tube piles are proposed. Moreover, the excavation process of the metro tunnel with and without reinforcement schemes is numerically simulated. The results show that the reinforcement scheme can effectively control the surface settlement value within the limited value (16.47 mm), which is close to the maximum surface settlement of 18.31 mm after the metro tunnel excavation is completed, indicating that the proposed reinforcement scheme is beneficial to ensure the safety of metro tunnel construction and the driving safety of the expressway.

Funder

Housing and Urban-Rural Construction Science and Technology Planning

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3