Optimal control and nonlinear numerical simulation analysis of tunnel rock deformation parameters

Author:

Guo Li1,He Yi1

Affiliation:

1. School of Civil Engineering, Luoyang Institute of Science and Technology , Luoyang , Henan 471023 , China

Abstract

Abstract In order to study the influence of nonlinear numerical simulation on the optimal control of the tunnel rock deformation parameters, the author proposes a numerical simulation study of the deformation characteristics of the layered rock tunnel, and determines the calculation model according to the thickness of the rock mass. The estimated thicknesses of the dolomite limestone surrounding the tunnel are 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 m. Select the vertical displacement to analyze as a result of the calculation. In order to study the influence of the structural slope on the tunnel stability, the thickness of the rock layer was 0.6 m, and the structural slopes of 5°, 15°, 30°, 45°, 60°, 75°, and 85° were used for simulation calculations. During on-site construction, focus on monitoring the tunnel section deformation before the construction of the secondary lining. Every 10–20 m and at the change of the surrounding rock, the observation section of the surrounding convergence and vault settlement shall be arranged, according to the observed deformation, the peripheral displacement rate and the vault subsidence rate are calculated. The results show that the vertical displacement of the top of the tunnel is generally in a “V” shape, that is, the maximum settlement in the tunnel; when the layer thickness is 0.3 m, the maximum vertical displacement of the rock layer is 7.2 mm, and the total settlement in the lining support tunnel is 8.23 mm. When the layer thickness is 0.9 m, the vertical displacement of the rock layer is 5.14 mm, and the total settlement in the lining support tunnel is 5.22 mm. When the layer thickness is from 0.9 to 0.3 m, the maximum vertical displacement of the rock layer increases by 140%, and the settlement at the vault increases by 158%. The focus of tunnel support at this time is the two sides of the lining structure and the vault with large vertical settlement. For the YK51 + 032 section, the phenomenon of first decreasing and then increasing is due to the sudden mud on the surrounding YK51 + 040, which causes the short-term deformation to increase. Only the ZK49 + 356 sections at the entrance of the spider has very good deformation due to the thin overlying stratum, and other sections are similar, which shows the reliability of the calculation results.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3