Experimental Investigation of Ground and Air Temperature Fields of a Cold-Region Road Tunnel in NW China

Author:

Wu Hao1,Zhong Yujian1ORCID,Xu Wei1,Shi Wangshuaiyin1,Shi Xinghao1,Liu Tong2ORCID

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

2. School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

To fully understand the temperature distribution of cold regions and the variation law of temperature fields in cold-region tunnels, this paper presents a case-history study on a tunnel located on the eastern Qinghai-Tibet Plateau, China. The conclusion is as follows: the temperature outside the tunnel and the ambient temperature are affected by wind speed and light. The law of the temperature field in the tunnel is greatly affected by wind speed and wind direction. According to the field test, the wind speed in the tunnel is about 2.8 m/s in winter, and the daily average temperature at the exit of the tunnel is basically lower than that at the entrance. From the central to the entrance, the temperature in the tunnel decreases by 0.11°C every 10 meters along the longitudinal direction; from the central to the exit, the temperature in the tunnel increases by 0.07°C every 10 meters. In this regard, for the problems of lining frost damage and central drainage pipe freezing, it is suggested to adopt the way of heating and drainage, but heating the freezing area outside the drainage pipe should be avoided. The test results can provide references for the design, construction, and research of the temperature field of the tunnel antifreezing system in the cold region. It is hoped that the test results can be useful in the design and construction of frost damage prevention systems and the investigation of temperature fields in cold-region tunnels.

Funder

Ministry of Transport of the People's Republic of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3