Analyzing Capacity Utilization and Travel Patterns of Chinese High-Speed Trains: An Exploratory Data Mining Approach

Author:

Liu Fanxiao12,Sun Zhanbo1ORCID,Zhang Peitong1,Peng Qiyuan12,Qiao Qingjie3

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, China

2. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, China

3. Beijing-Shanghai High-Speed Railway Co. Ltd, China

Abstract

Train capacity utilization (TCU), usually represented by passenger load factor (PLF), is a critical measure of effectiveness for rail operation. In literature, efforts are usually made to improve capacity utilization by optimizing rail operation and management strategies. Comparably little attention is paid to analyzing the factors that affect TCU and to understanding the behavioral patterns behind it. This paper applies exploratory data mining techniques to a 3-month long real world train operation data of the Beijing-Shanghai High-Speed Railway. Principal component analysis (PCA) is conducted to find the principal components that can efficiently represent the collected data. Clustering techniques are then applied to understand the unique characteristics that affect PLF and the travel pattern. The findings can be further used to guide train operation planning and facilitate better decision-making.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3