Modeling Car-Following Heterogeneities by Considering Leader–Follower Compositions and Driving Style Differences

Author:

Sun Zhanbo12ORCID,Yao Xue12ORCID,Qin Ziye12ORCID,Zhang Peitong3,Yang Ze12ORCID

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China

2. National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Chengdu, China

3. School of Automobile and Transportation, Xihua University, Chengdu, China

Abstract

To better understand the behavioral heterogeneities of human-operated vehicles, the paper proposes a method to distinguish car-following behaviors in specific leader–follower contexts. Using the Next-Generation Simulation dataset, the car-following data are first classified into four leader–follower compositions, namely, truck–car, car–car, car–truck, and truck–truck. Based on the classified data, we calibrate the parameters of a few well-known car-following models, including Full Velocity Difference model, Intelligent Driver Model, and Gazis–Herman–Rothery model. Principal component analysis and clustering analysis are then applied to the calibrated parameters to discover the behavioral patterns and to find the probabilistic distributions of the parameters for the classified car-following (CCF) models. Simulation results show that compared with the unified car-following models, the estimation errors of calibrated CCF models are reduced by 20.79% to 49.05%, which indicates that the proposed method provides a more accurate description of car-following heterogeneities. The proposed framework could help highway traffic operators better know the traffic users.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Sichuan Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3