A Heterogeneity-Aware Car-Following Model: Based on the XGBoost Method

Author:

Zhu Kefei1,Yang Xu1,Zhang Yanbo2,Liang Mengkun2,Wu Jun2

Affiliation:

1. School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100083, China

2. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

With the rising popularity of the Advanced Driver Assistance System (ADAS), there is an increasing demand for more human-like car-following performance. In this paper, we consider the role of heterogeneity in car-following behavior within car-following modeling. We incorporate car-following heterogeneity factors into the model features. We employ the eXtreme Gradient Boosting (XGBoost) method to build the car-following model. The results show that our model achieves optimal performance with a mean squared error of 0.002181, surpassing the model that disregards heterogeneity factors. Furthermore, utilizing model importance analysis, we determined that the cumulative importance score of heterogeneity factors in the model is 0.7262. The results demonstrate the significant impact of heterogeneity factors on car-following behavior prediction and highlight the importance of incorporating heterogeneity factors into car-following models.

Publisher

MDPI AG

Reference44 articles.

1. Research progress on car-following models;Yang;J. Traffic Transp. Eng.,2019

2. An, S.-H., Lee, B.-H., and Shin, D.-R. (2011, January 26–28). A Survey of Intelligent Transportation Systems. Proceedings of the 2011 3rd International Conference on Computational Intelligence, Communication Systems and Networks, Bali, Indonesia.

3. State-of-the-art of vehicular traffic flow modelling;Hoogendoorn;Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.,2001

4. An Operational Analysis of Traffic Dynamics;Pipes;J. Appl. Phys.,1953

5. Traffic Dynamics: Studies in Car Following;Chandler;Oper. Res.,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3