Prospects of 4H-SiC Double Drift Region IMPATT Device as a Photo-Sensitive High-Power Source at 0.7 Terahertz Frequency Regime

Author:

Mukherjee Moumita1,Mazumder Nilratan2,Roy Sitesh Kumar3

Affiliation:

1. Centre of Advanced Study in Radiophysics and Electronics, University of Calcutta 1, Girish Vidyaratna Lane, Kolkata 700009, India

2. International Institute of Information Technology, Visva Bharati University, X-1, 8/3, Block-EP, Sector V, Salt Lake Electronics Complex, Kolkata 700091, India

3. Centre of Millimeterwave Semiconductor Devices and Systems, Centre of Advanced Study in Radiophysics and Electronics, University of Calcutta 1, Girish Vidyaratna Lane, Kolkata 700009, India

Abstract

The dynamic performance of wide-bandgap 4H-SiC based double drift region (p++ p n n++) IMPATT diode is simulated for the first time at terahertz frequency (0.7 Terahertz) region. The simulation experiment establishes the potential of SiC based IMPATT diode as a high power (2.5×1011Wm2) terahertz source. The parasitic series resistance in the device is found to reduce the RF power output by 10.7%. The effects of external radiation on the simulated diode are also studied. It is found that (i) the negative conductance and (ii) the negative resistance of the diode decrease, while, the frequency of operation and the quality factor shift upward under photoillumination. Holes in 4H-SiC based IMPATT are found to dominate the modulation activities. The inequality in the magnitude of electron and hole ionization rates in the semiconductors may be correlated with these findings.

Funder

Defence Research and Development Organisation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3