Machine Learning-Based Intelligent Scoring of College English Teaching in the Field of Natural Language Processing

Author:

Wang Wei1ORCID

Affiliation:

1. Changchun Guanghua University, Changchun 130031, Jilin, China

Abstract

The current education evaluation is limited not only to the mode of simplification, indexing, and datafication, but also to the scientific nature of college teaching evaluation. This work firstly conducts a theoretical analysis of natural language processing technology, analyzes the related technologies of intelligent scoring, designs a systematic process for intelligent scoring of college English teaching, and finally conducts theoretical research on the Naive Bayesian algorithm in machine learning. In addition, the error of intelligent scoring of English teaching in colleges and universities and the accuracy of scoring and classification are analyzed and researched. The results show that the error between manual scoring and machine scoring is basically about 2 points and the minimum error of intelligent scoring in college English teaching under machine scoring can reach 0 points. There is a certain bias in manual scoring, and scoring on the machine can reduce the generation of this error. The Naive Bayes algorithm has the highest classification accuracy on the college intelligent scoring dataset, which is 76.43%. The weighted Naive Bayes algorithm has been improved in the classification accuracy of college English teaching intelligent scoring, with an average accuracy rate of 74.87%. To sum up, the weighted Naive Bayes algorithm has better performance in the classification accuracy of college English intelligent scoring. This work has a significant effect on the scoring of the college intelligent teaching scoring system under natural language processing and the classification of college teaching intelligence scoring under the Naive Bayes algorithm, which can improve the efficiency of college teaching scoring.

Funder

Higher Education Research Project of Jilin Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3