Applying SLAM Algorithm Based on Nonlinear Optimized Monocular Vision and IMU in the Positioning Method of Power Inspection Robot in Complex Environment

Author:

Wang Can1ORCID,Li Zhibin1,Kang Yefei1,Li Yingzheng1

Affiliation:

1. School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

Under China’s Intelligent Electric Power Grid (IEPG), the research on IEPG inspection mode is of great significance. This work aims to improve the positioning and navigation performance of IEPG inspection robots in a complex environment. First, it reviews the monocular camera projection and the Inertial Measurement Unit (IMU) models. It also discusses the tight-coupling monocular Vision Inertial Navigation System (VINS) and the initialization theory of the Simultaneous Localization and Mapping (SLAM) system. Nonlinear optimization for SLAM by the Gauss–Newton Method (GNM) is established. Accordingly, this work proposes the SLAM system based on tight-coupling monocular VINS. The EuRoC dataset data sequence commonly used in visual-inertial algorithm testing in IEPG is used for simulation testing. The proposed SLAM system’s attitude and position estimation errors are analyzed on different datasets. The results show that the errors of roll, pitch, and yaw angle are acceptable. The errors of the X, Y, and Z axes are within 40 cm, meeting the positioning requirements of an Unmanned Aerial Vehicle (UAV). Meanwhile, the Root Mean Square Error (RMSE) evaluates the improvement of positioning accuracy by loop detection. The results testify that loop detection can reduce the RMSE and improve positioning accuracy. The attitude estimation tests the angle changes of pitch, roll, and yaw angles with time under a single rotation condition. The estimated value of the proposed SLAM algorithm is compared with the real value through Absolute Trajectory Error (ATE). The results show that the real value and the estimated value of attitude error can coincide well. Thus, the proposed SLAM algorithm is effective for positioning and navigation. ATE can also be controlled within ±2.5°, satisfying the requirements of navigation and positioning accuracy. The proposed SLAM system based on tight-coupling monocular VINS presents excellent positioning and navigation accuracy for the IEPG inspection robot. The finding has a significant reference value in the later research of IEPG inspection robots.

Funder

Shanghai Key Laboratory of Power Station Automation Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing ORB-SLAM For Varied Weather Conditions Using Genetic Algorithm;Journal of Physics: Conference Series;2024-07-01

2. A Construction Optimization for Laser SLAM Based on Odometer Constraint Fusion;Information Technology and Control;2024-06-26

3. Efficient Bi-Level Optimization for Recommendation Denoising;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

4. Application and Analysis of Remote Sensing Image Processing Technology in Robotic Power Inspection;Journal of Robotics;2023-04-15

5. Robot Bionic Eye Motion Posture Control System;Electronics;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3