A Graph Optimization-Based Acoustic SLAM Edge Computing System Offering Centimeter-Level Mapping Services with Reflector Recognition Capability

Author:

Zhou Zou1ORCID,Zhang Guoli1ORCID,Zheng Fei1ORCID,Wang Tuyang2ORCID,Chen Longjie1,Duan Nan1

Affiliation:

1. Ministry of Education Key Laboratory of Cognitive Radio and Information Processing, Guilin University of Electronic Technology, Guilin 541004, China

2. National Demonstration Center for Experimental Electronic Circuit Education, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Robots can use echo signals for simultaneous localization and mapping (SLAM) services in unknown environments where its own camera is not available. In current acoustic SLAM solutions, the time of arrival (TOA) in the room impulse response (RIR) needs to be associated with the corresponding reflected wall, which leads to an echo labelling problem (ELP). The position of the wall can be derived from the TOA associated with the wall, but most of the current solutions ignore the effect of the cumulative error in the robot’s moving state measurement on the wall position estimation. In addition, the estimated room map contains only the shape information of the room and lacks position information such as the positions of doors and windows. To address the above problems, this paper proposes a graph optimization-based acoustic SLAM edge computing system offering centimeter-level mapping services with reflector recognition capability. In this paper, a robot equipped with a sound source and a four-channel microphone array travels around the room, and it can collect the room impulse response at different positions of the room and extract the RIR cepstrum feature from the room impulse response. The ELP is solved by using the RIR cepstrum to identify reflectors with different absorption coefficients. Then, the similarity of the RIR cepstrum vectors is used for closed-loop detection. Finally, this paper proposes a method to eliminate the cumulative error of robot movement by fusing IMU data and acoustic echo data using graph-optimized edge computation. The experiments show that the acoustic SLAM system in this paper can accurately estimate the trajectory of the robot and the position of doors, windows, and so on in the room map. The average self-localization error of the robot is 2.84 cm, and the mapping error is 4.86 cm, which meet the requirement of centimeter-level map service.

Funder

Guangxi Science and Technology Plan Project

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3