Study of the Potential Endocrine-Disrupting Effects of Phenylurea Compounds on Neurohypophysis Cells In Vitro

Author:

Sepp Krisztián1ORCID,Molnár Zsolt2,László Anna M.3,Alapi Tünde4,Tóth László2,Serester Andrea2,Valkusz Zsuzsanna1,Gálfi Márta2,Radács Marianna2

Affiliation:

1. First Department of Internal Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary

2. Institute of Applied Science, Department of Environmental Biology and Education, Gyula Juhász Faculty of Education, University of Szeged, Szeged, Hungary

3. Department of Biometrics and Agricultural Informatics, Faculty of Horticultural Science, Szent István University, Budapest, Hungary

4. Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary

Abstract

Homeostatic disruptor agents, and endocrine disruptor compounds (EDC) specifically, can originate from agricultural and industrial chemicals. If they modify the adaptation of living organisms as direct (e.g., by altering hormone regulation, membrane functions) and/or indirect (e.g., cell transformation mechanisms) factors, they are classified as EDC. We aimed to examine the potential endocrine-disrupting effects of phenylurea herbicides (phenuron, monuron, and diuron) on the oxytocin (OT) and arginine-vasopressin (AVP) release of neurohypophysis cell cultures (NH). In our experiments, monoamine-activated receptor functions of neurohypophyseal cells were used as a model. In vitro NH were prepared by enzymatic (trypsin, collagenase) and mechanical dissociation. In the experimental protocol, the basal levels of OT and AVP were determined as controls. Later, monoamine (epinephrine, norepinephrine, serotonin, histamine, and dopamine) activation (10−6 M, 30 min) and the effects of phenylurea (10−6 M, 60 min) alone and in combination (monoamines 10−6 M, 30 min + phenylureas 10−6 M, 60 min) with monoamine were studied. OT and AVP hormone contents in the supernatant media were measured by radioimmunoassay. The monoamine-activated receptor functions of neurohypophyseal cells were modified by the applied doses of phenuron, monuron, and diuron. It is concluded that the applied phenylurea herbicides are endocrine disruptor agents, at least in vitro for neurohypophysis function.

Funder

European Social Fund

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3