A Higher-Order Galerkin Time Discretization and Numerical Comparisons for Two Models of HIV Infection

Author:

Attaullah 1ORCID,Yüzbaşı Şuayip2,Alyobi Sultan3ORCID,Yassen Mansour F.45ORCID,Weera Wajaree6

Affiliation:

1. Department of Mathematics and Statistics, Bacha Khan University Charsadda, KP 24461, Pakistan

2. Department of Mathematics, Faculty of Science, Akdeniz University, TR-07058 Antalya, Turkey

3. King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia

4. Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia

5. Department of Mathematics, Faculty of Science, Damietta University, New Damietta, 34517 Damietta, Egypt

6. Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract

Human immunodeficiency virus (HIV) infection affects the immune system, particularly white blood cells known as CD4+ T-cells. HIV destroys CD4+ T-cells and significantly reduces a human’s resistance to viral infectious diseases as well as severe bacterial infections, which can lead to certain illnesses. The HIV framework is defined as a system of nonlinear first-order ordinary differential equations, and the innovative Galerkin technique is used to approximate the solutions of the model. To validate the findings, solve the model employing the Runge-Kutta (RK) technique of order four. The findings of the suggested techniques are compared with the results obtained from conventional schemes such as MuHPM, MVIM, and HPM that exist in the literature. Furthermore, the simulations are performed with different time step sizes, and the accuracy is measured at various time intervals. The numerical computations clearly demonstrate that the Galerkin scheme, in contrast to the Runge-Kutta scheme, provides incredibly precise solutions at relatively large time step sizes. A comparison of the solutions reveals that the obtained results through the Galerkin scheme are in fairly good agreement with the RK4 scheme in a given time interval as compared to other conventional schemes. Moreover, having performed various numerical tests for assessing the efficiency and computational cost (in terms of time) of the suggested schemes, it is observed that the Galerkin scheme is noticeably slower than the Runge-Kutta scheme. On the other hand, this work is also concerned with the path tracking and damped oscillatory behaviour of the model with a variable supply rate for the generation of new CD4+ T-cells (based on viral load concentration) and the HIV infection incidence rate. Additionally, we investigate the influence of various physical characteristics by varying their values and analysing them using graphs. The investigations indicate that the lateral system ensured more accurate predictions than the previous model.

Funder

Program Management Unit for Human Resources and Institutional Development, Research, and Innovation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3