On the comparative performance of fourth order Runge-Kutta and the Galerkin-Petrov time discretization methods for solving nonlinear ordinary differential equations with application to some mathematical models in epidemiology

Author:

Attaullah 1,Yassen Mansour F.23,Alyobi Sultan4,Al-Duais Fuad S.56,Weera Wajaree7

Affiliation:

1. Department of Mathematics & Statistics, Bacha Khan University, Charsadda 24461, Pakistan

2. Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517 Damietta, Egypt

4. King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia

5. Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam bin Abdulaziz University, Al-Kharj, Al-Aflaj 11942, Saudi Arabia

6. Administration Department, Administrative Science College, Thamar University, Thamar, Yemen

7. Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

Abstract

<abstract><p>Anti-viral medication is comparably incredibly beneficial for individuals who are infected with numerous viruses. Mathematical modeling is crucial for comprehending the various relationships involving viruses, immune responses and health in general. This study concerns the implementation of a <italic>continuous</italic> Galerkin-Petrov time discretization scheme with mathematical models that consist of nonlinear ordinary differential equations for the hepatitis B virus, the Chen system and HIV infection. For the Galerkin scheme, we have two unknowns on each time interval which have to be computed by solving a $ 2 \times 2 $ block system. The proposed method is accurate to order 3 in the whole time interval and shows even super convergence of order 4 in the discrete time points. The study presents the accurate solutions achieved by means of the aforementioned schemes, presented numerically and graphically. Further, we implemented the classical fourth-order Runge-Kutta scheme accurately and performed various numerical tests for assessing the efficiency and computational cost (in terms of time) of the suggested schemes. The performances of the fourth order Runge-Kutta and the Galerkin-Petrov time discretization approaches for solving nonlinear ordinary differential equations were compared, with applications towards certain mathematical models in epidemiology. Several simulations were carried out with varying time step sizes, and the efficiency of the Galerkin and Runge Kutta schemes was evaluated at various time points. A detailed analysis of the outcomes obtained by the Galerkin scheme and the Runge-Kutta technique indicates that the results presented are in excellent agreement with each other despite having distinct computational costs in terms of time. It is observed that the Galerkin scheme is noticeably slower and requires more time in comparison to the Runge Kutta scheme. The numerical computations demonstrate that the Galerkin scheme provides highly precise solutions at relatively large time step sizes as compared to the Runge-Kutta scheme.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3