Study on Failure Characteristics and Rock Burst Mechanism of Roadway Roof under Cyclic Dynamic Load

Author:

Zheng Chunmei1ORCID,Zheng Jiayan1,Peng Xiaojuan1,Zhou Lei1

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Rock burst is a catastrophic phenomenon that often occurs in underground rock mass engineering. In order to reveal the essence of rock burst of a hard roof in the process of roadway excavation, the particle discrete element method is used to establish a roadway model and simulate the disturbance of harmonic dynamic load based on the analysis of a rock burst accident in a deep mine. The crack field, stress field, displacement field, and kinetic energy of roadway surrounding rock disturbed by cyclic dynamic load were analyzed, and the disaster mechanism of roadway impacting roof instability was discussed. The results show that, compared with the roadway support structure under static load that can give full play to its control function of surrounding rock, the roadway surrounding rock will collapse and lose stability in a large area under the roof cyclic dynamic load, and the ordinary supporting structure cannot give full play to its control function of surrounding rock, resulting in the surrounding rock destruction and supporting structure failure. In addition, the essence of rock burst in a hard thick roof is due to the instantaneous superposition of static stress and dynamic load, leading to the instantaneous instability and collapse of roadway roof in a large area. The research is of great significance to further understand the deformation and failure mechanism of roadway surrounding rock under strong impact load, to guide the safe production and prevent the occurrence of rock burst hazard in underground rock mass engineering.

Funder

Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3