Characteristics of Roof Collapse of Mining Tunnels in the Fault Fracture Zone and Distribution of the Boundary Force of the Accumulation Body

Author:

Zhang Guohua,Liu Mengsen,Qin Tao,Wang Lei,Duan Yanwei,Li Zibo

Abstract

Under the influence of coal mining, the gravel in mining tunnel sections of a fault fracture zone is prone to collapse, and the collapse accumulation body will block the tunnel, which has a very adverse influence on the safety production of coal mining and the evacuation of personnel after underground disasters. The macroscopic and mechanical characteristics of the collapse accumulation body have been studied extensively in previous works. The purpose of this paper is to provide theoretical support and reference for the rapid excavation of the tunnel blocked by the collapse accumulation body in the fault fracture zone. Taking the fault fracture zone in the tunnel as the research background, the physical characteristics and boundary mechanical characteristics of the collapse accumulation body in the fault fracture zone are studied by the method of combining on-site investigation and theoretical analysis. The results show that the force acting on the boundary on both sides of the accumulation body is passive resistance from the side wall, which is derived from the slip effect of the accumulation body slope. Similarly, the unstable boundary of the fault fracture zone caused by tunnel instability is elliptical, and the overlying load of the rescue channel to be excavated in the accumulation body is limited. On the basis of the collapse instability dimensions of the broken zone of the tunnel surrounding the rock, the calculation formulas of the height of the accumulation body and the horizontal force at the boundary were established, respectively, under two conditions of whether the collapse space was filled, and whether the curve relationship between the distribution of the horizontal force at the boundary of the accumulation body and the buried depth in the accumulation body was obtained.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference32 articles.

1. Prevention of rock burst by protective seam mining in high-depth strata: A case study;Yi;Vibroeng. Procedia,2018

2. Yonts, B. (2018). Analysis of Underground Coal Mine Structures Subjected to Dynamic Events, University of Kentucky.

3. Simulation study on rescue channel position and section shape selection for accumulation body of collapse-collapse;Zhang;J. Heilongjiang Univ. Sci. Technol.,2017

4. Characteristics of Collapse Accumulation Body in Roadway and Numerical Simulation of Rescue Channel Excavation;Chen;Geotech. Geol. Eng.,2022

5. Research on failure criteria and collapse height of roadway roof strata based on energy accumulation and dissipation characteristics;Li;Energy Sci. Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3