Acoustic Emission Characteristics and Initiation Mechanism of Instantaneous Rock Burst for Beishan Granite

Author:

Wang Chaosheng12ORCID,Wan Hao1ORCID,Ma Jianjun12ORCID,Chen Xianglin1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang, Henan 471023, China

2. Engineering Technology Research Center of Safety and Protection of Buildings of Henan Province, Luoyang, Henan 471023, China

Abstract

In this paper, the instantaneous rock burst test of Beishan granite is carried out by using a deep rock burst simulation test system and an acoustic emission monitoring system. The acoustic emission data were monitored in real time during the test. The variation of the number and energy of acoustic emission events was studied, and the distribution characteristics of rock burst debris were analyzed. Based on plate and shell mechanics, the failure process of surrounding rock is discussed from the perspective of structural stability. The results show that (1) when the vertical stress reaches 171.31 MPa, the specimen is destroyed and the number of acoustic emission events and cumulative absolute energy before the specimen is destroyed increase sharply. (2) The debris generated by rock burst is mainly composed of slab debris, flaky debris, and thin flaky debris, accounting for 93.53% of the total debris. (3) When the length or height of the rock slab is constant, the maximum tensile stress in the rock slab decreases nonlinearly with the increase of rock slab thickness. For the same size of the rock slab, the farther away from the roadway wall, the greater the maximum tensile stress in the rock slab. (4) When the thickness of the rock slab is constant, the maximum tensile stress in the rock slab increases nonlinearly with the increase of height to thickness ratio K. When the ratio of height to thickness K is constant, the maximum tensile stress in the rock slab increases with the increase of rock slab thickness h. (5) With the increase of covering depth, the critical failure thickness of the rock slab decreases nonlinearly and the surplus energy increases nonlinearly.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3