Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

Author:

Jeandet Philippe1ORCID,Delaunois Bertrand12,Aziz Aziz2,Donnez David12,Vasserot Yann1,Cordelier Sylvain2,Courot Eric2

Affiliation:

1. Laboratory of Enology and Applied Chemistry, Research Unit “Vines and Wines of Champagne,” UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, 51687 Reims Cedex 02, France

2. Laboratory Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne,” UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, 51687 Reims Cedex 02, France

Abstract

Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, onSTSgene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with theSTSgene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3