Feature Clustering Analysis Using Reference Model towards Rolling Bearing Performance Degradation Assessment

Author:

Ding Xiaoxi1ORCID,Wang Liming1ORCID,Huang Wenbin1,He Qingbo2,Shao Yimin1

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China

2. School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The health monitoring and management have been accepted in modern industrial machinery for an intelligent industrial production. To timely and reliably assess the bearing performance degradation, a novel health monitoring method called feature clustering analysis (FCA) has been proposed in this study. Along with the working time going, this new monitored chart picked by FCA aims to describe the feature clustering distribution transition by a series of reference models. First, the data provided by the reference state (healthy data) and the one from the monitor state (monitor data) are fused together to construct a reference model, which is to explore the active role of healthy status and activate the difference between healthy status and unhealthy status. Manifold learning is later implemented to mine the discriminated features for good class-separable clustering measure. In this manner, heterogeneous information hidden in this reference model will appear once degradation happened. Finally, a clustering quantification factor, named as feature clustering indicator (FCI), is calculated to assess distribution evolution and migration of the monitor status as compared to the consistent healthy status. Furthermore, a single Gaussian model (SGM) based on these FCIs is used to provide a smooth estimate of the healthy condition level. The corresponding negative log likelihood probability (NLLP) and the fault occurrence alarm are developed for an accurate and reliable FCC. And it can well depict a comprehensibility of the real bearing performance degradation process for its whole life. Meanwhile, as compared to other health profiles based on the classical health indicators, the proposed FCC has provided a much more accurate degradation level and rather monotonic profile. The experimental results show the potential in machine health performance degradation assessment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3