Affiliation:
1. Department of Engineering, University of Ferrara, via Saragat 1, 44122 Ferrara, Italy
Abstract
The monitoring of rolling element bearings through vibration-based condition indicators plays a crucial role in the modern machinery. The kurtosis is a very efficient indicator being sensitive to impulsive components within the vibration signature that often are symptomatic of localized faults. In order to improve the diagnostic performance of the kurtosis, blind deconvolution algorithms can be exploited in order to detect bearing faults and, most importantly, their position. In this scenario, this paper focuses on the development of a novel condition indicator specifically designed for the damage assessment in rolling element bearings. The proposed indicator allows to track the bearing degradation process taking into account three different possible positions: outer race, inner race, and rolling element. This indicator fits real-time monitoring procedures allowing for the automatic detection and identification of the bearing fault. The validation of the proposed indicator has been carried out by means of both simulated signal and a run-to-failure experiment. The results highlight that the proposed indicator is able to detect more efficiently the fault occurrence and, most importantly, quicker than other established techniques.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献