Affiliation:
1. Department of Mechanical & Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
2. Department of Mechanical Engineering, National Institute of Technology Uttarakhand, Srinagar, India
Abstract
The performance degradation assessment of ball bearings is of great importance to increase the efficiency and the reliability of rotating mechanical systems. The large dimensionality of feature space introduces a lot of noise and buries the potential information about faults hidden in the feature data. This paper proposes a novel health assessment method facilitated with two compatible methods, namely curvilinear component analysis and self-organizing map network. The novelty lies in the implementation of a vector quantization approach for the sub-manifolds in the feature space and to extract the fault signatures through nonlinear mapping technique. Curvilinear component analysis is a nonlinear mapping tool that can effectively represent the average manifold of the highly folded information and further preserves the local topology of the data. To answer the complications and to accomplish reliability and accuracy in bearing performance degradation assessment, the work is carried out with following steps; first, ensemble empirical mode decomposition is used to decompose the vibration signals into useful intrinsic mode functions; second, two fault features i.e. singular values and energy entropies are extracted from the envelopes of the intrinsic mode function signals; third, the extracted feature vectors under healthy conditions, further reduced with curvilinear component analysis are used to train the self-organizing map model; finally, the reduced test feature vectors are supplied to the trained self-organizing map and the confidence value is obtained. The effectiveness of the proposed technique is validated on three run-to-failure test signals with the different type of defects. The results indicate that the proposed technique detects the weak degradation earlier than the widely used indicators such as root mean square, kurtosis, self-organizing map-based minimum quantization error, and minimum quantization error-based on the principal component analysis.
Subject
Mechanical Engineering,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献