Study on Dynamic Disaster in Steeply Deep Rock Mass Condition in Urumchi Coalfield

Author:

Lai Xing-Ping12,Cai Mei-Feng3,Ren Fen-Hua3,Shan Peng-Fei12,Cui Feng12,Cao Jian-Tao12

Affiliation:

1. School of Energy and Mining Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Western Mines and Hazard Prevention, Ministry of Education of China, Xi’an 710054, China

3. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The possible mining seismicity (MS) and its prediction are important for safety and recovery optimization of mining in steep-heavy-thick rock mass condition. The stress-lever-rotation-effect (SLRE) model of fault-like mobilization was proposed preliminarily. Some innovation monitoring technique approaches for mining seismicity assessment were successfully fulfilled at Wudong Mine of Urumchi Coalfield, China. The characteristics on acoustic-seismic-wave index indicated the spatial-temporal-strength and stress redistribution of steeply deeper-heavy thick coal and rock masses. Applications in field investigations showed that the innovation monitoring (in time and space) of these instruments could provide important information about the performance of mining disturbed structures (heading and steep pillar) during caving of competent overlying roof strata. The prediction and evaluation for mining seismicity were applicable and valid. Operating practice showed that mining efficiency was raised and conspicuous economic benefit was obtained. This approach provides essential data for assessing mining seismicity, coal burst, dynamic hazard prevention, and deep mining potential.

Funder

973 National Key Basic Research Development Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3