Experimental Study of Prevention and Control of Rock Burst in Steeply Inclined Coal Seams by Mining Sequence and Filling

Author:

Zhang Zhihui1ORCID,Liu Yangyi1,Zhu Wenwen1,Liu Jian1,Ma Tian1,Xie Chunxue1

Affiliation:

1. School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

The control and prevention of rock burst in a steeply inclined coal seam are essential. In order to figure out the effects of filling and mining sequence on rock burst in the steeply inclined coal seam, B3+6 and B1+2 coal seams in Wudong coal mine are chosen as the research objects, and an in-house experiment system of similarity simulation is established in this study. Combined with numerical simulation, the characteristics of collapse, stress distribution, and displacement variations can be measured, which provide useful information to study the effects of the filling body and mining sequence on rock burst. Experimental results show that the key reason for rock burst in a steeply inclined coal seam is the stress concentration of the rock pillar between B3+6 and B1+2 coal seams instead of the stress-lever-effect of a deeper rock pillar. The filling body can support the middle rock pillar, share the geological structure stress in the horizontal and vertical direction, eliminate the stress concentration zone largely, and prevent the occurrence of rock burst. When multiple working faces are working, the opposite side of the coal seam should be mined first to release the energy in the rock in advance, thus preventing the rock burst effectively. The research results provide fundamental information for better understanding the reason for rock burst and preventing rock burst in the steeply inclined coal seam.

Funder

Special Funds for the Construction of First-Class Disciplines

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference25 articles.

1. Prevention measures and types of mine strata pressure bump occurred in shallow depth seam;H. Lan;Coal Science and Technology,2014

2. Distribution, type, mechanism and prevention of rockburst in China;Y. S. Pan;Chinese Journal of Rock Mechanics and Engineering,2003

3. Deformation and stability of an elasto-plastic softening pillar

4. Experimental study of the movement of backfilling gangues for goaf in steeply inclined coal seams

5. Rock burst risk in surrounding abscission layer overlying high key strata in deep strip mining mines;F. X. Jiang;Journal of China University of Mining & Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3