Study on the Bending Effect and Rock Burst Mechanism of Middle Rock Pillars in Extremely Thick Subvertical Coal Seams

Author:

Hao Yuxi,Sun Yangyang,Hu Jiangchun,He Manchao,Wang Jiong,Li Mingliang

Abstract

Rock bursts occur in nearly vertical coal seam mines at shallow to moderate burial depths, which endangers safe mining. To study the rock burst mechanisms of nearly vertical and extremely thick coal seams, the characteristics of rock bursts were studied via on-site investigation, and a field test of in situ stress was carried out. The mechanical behavior of rock pillars in the middle of the B1+2 and B3+6 coal seams was analyzed using theoretical and numerical simulation methods. The results show that the horizontal maximum principal stress orientation and the nearly vertical coal seam strike were both 82°. The bending of the rock pillars occurred due to the horizontal unbalanced force, and a large amount of bending energy was accumulated within 50 m above the mining level. Rock pillars were bent toward the B1+2 mining goaf and exerted a reverse bending and squeezing effect on the B3+6 coal seam below the mining levels. In addition to the inclination and compression of the B3+6 coal seam roof, stress concentration zones formed in the B3+6 coal seam, where a large amount of elastic energy had accumulated in the coal-rock mass. Consequently, both the rock pillars and the B3+6 coal body at the mining level are in an unstable state undue to mining disturbance. Rock burst energy theory and numerical calculation results showed that in the stress concentration zones of the B3+6 coal seam, the energy density of the coal mass reached or exceeded its critical value before rock burst occurred, and rock bursts were prone to occur under mining disturbances. The in situ microseismic results showed that high-energy microseismic events were mainly concentrated in middle rock pillars around the mining levels and the coal mass in high-stress concentration zones.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3