Microscopic Simulation-Based High Occupancy Vehicle Lane Safety and Operation Assessment: A Case Study

Author:

Li Chao1ORCID,Karimi Mohammad1,Alecsandru Ciprian1ORCID

Affiliation:

1. Department of Building, Civil and Environmental Engineering, Concordia University, Montréal, QC, Canada H3G 2W1

Abstract

This study proposes two general alternative designs to enhance the operation and safety of High Occupancy Vehicle (HOV) lanes at junctions with bus terminals or parking lots. A series of analysis tools, including microscopic simulation, video-based vehicle tracking technique, and Surrogate Safety Assessment Model (SSAM), are applied to model and test the safety and operational efficiency of an HOV road segment near a bus terminal in Québec as a case study. A metaheuristic optimization algorithm (i.e., Whale Optimization Algorithm) is employed to calibrate the microscopic model while deviation from the observed headway distribution is considered as a cost function. The results indicate that this type of HOV configurations exhibits significant safety problems (high number of crossing conflicts) and operational issues (high value of total delay) due to the terminal-bound buses that frequently need to travel across the main road. It is shown that the proposed alternative geometry design efficiently ameliorates the traffic conflicts issues. In addition, the alternative control design scheme significantly reduces the public transit delay. It is expected that this methodology can be applied to other reserved lane configurations similar to the investigated case study.

Funder

Ministère des Transports du Québec

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3