Exploration and Coordination of Complementary Multirobot Teams in a Hunter-and-Gatherer Scenario

Author:

Dadvar Mehdi1,Moazami Saeed1,Myler Harley R.1,Zargarzadeh Hassan1ORCID

Affiliation:

1. Phillip M. Drayer Electrical Engineering Department of Lamar University, Beaumont, TX 77710, USA

Abstract

The hunter-and-gatherer approach copes with the problem of dynamic multirobot task allocation, where tasks are unknowingly distributed over an environment. This approach employs two complementary teams of agents: one agile in exploring (hunters) and another dexterous in completing (gatherers) the tasks. Although this approach has been studied from the task planning point of view in our previous works, the multirobot exploration and coordination aspects of the problem remain uninvestigated. This paper proposes a multirobot exploration algorithm for hunters based on innovative notions of “expected information gain” to minimize the collective cost of task accomplishments in a distributed manner. Besides, we present a coordination solution between hunters and gatherers by integrating the novel notion of profit margins into the concept of expected information gain. Statistical analysis of extensive simulation results confirms the efficacy of the proposed algorithms compared in different environments with varying levels of obstacle complexities. We also demonstrate that the lack of effective coordination between hunters and gatherers significantly distorts the total effectiveness of the planning, especially in environments containing dense obstacles and confined corridors. Finally, it is statistically proven that the overall workload is distributed equally for each type of agent which ensures that the proposed solution is not biased to a particular agent and all agents behave analogously under similar characteristics.

Funder

Lamar University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Emergence of Specialized Roles Within Groups;Topics in Cognitive Science;2023-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3