New Tool Wear Estimation Method of the Milling Process Based on Multisensor Blind Source Separation

Author:

Gao Chen1ORCID,Bintao Sun2ORCID,Wu Heng3,Peng Mengjuan3,Zhou Yuqing2ORCID

Affiliation:

1. School of Mechatronics and Transportation, Jiaxing Nanyang Polytechnic Institute, Jiaxing, China

2. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China

3. Wenzhou Hanggang Water Co. Ltd, Wenzhou, China

Abstract

Timely and effective identification and monitoring of tool wear is important for the milling process. However, traditional methods of tool wear estimation have run into difficulties due to under small samples with less prior knowledge. This article addresses this issue by employing a multisensor tool wear estimation method based on blind source separation technology. Stationary subspace analysis (SSA) technology is applied to transform multisensor signals to stationary and nonstationary sources without prior information of signals. Ten dimensionless time-frequency indices of the nonstationary signal are extracted to train least squares support vector regression (LS-SVR) to obtain a tool wear estimation model for small samples. The analysis and comparison of one benchmark tool wear dataset and tool wear experiments verify the feasibility and effectiveness of the proposed method and outperform other two current methods.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3