Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Wenzhou City Public Industrial Science and Technology Project of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference59 articles.
1. Ai, C. S., Sun, Y. J., He, G. W., Ze, X. B., Li, W., & Mao, K. (2012). The milling tool wear monitoring using the acoustic spectrum. The International Journal of Advanced Manufacturing Technology, 61(5–8), 457–463.
2. Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23(2), 539–546.
3. Ammouri, A., & Hamade, R. (2014). Current rise criterion: A process-independent method for tool-condition monitoring and prognostics. The International Journal of Advanced Manufacturing Technology, 72(1–4), 509–519.
4. Cai, W. L., Zhang, W. J., Hu, X. F., & Liu, Y. C. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510.
5. Chen, B. J., Chen, X. F., Li, B., He, Z. J., Cao, H. R., & Cai, G. (2011). Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mechanical Systems and Signal Processing, 25(7), 2526–2537.
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献