Ultrasonic Adaptive Detection for Aerospace Components with Varying Thickness

Author:

Xiao Zhen1ORCID,Xu Chunguang1,Xiao Dingguo1,Peng Genyue1,Li Xinliang1ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Automatic inspection of microdefects located in the aerospace components is difficult due to the imprecise scanning trajectory, especially for those specimens with varying thickness. In this paper, a new ultrasonic nondestructive testing (NDT) system using the robotic scanning trajectory is constructed for inspecting turbine blades. Additionally, an approach based on the analysis of ultrasonic signals is proposed to calibrate the trajectory; the ultrasonic image based on the threshold function represents the distribution of inner defects when the following gate is used to track the flaw echo. Therefore, the characteristic parameters of the flaw echo signals are easy to be discriminated if the reflection waves are stable in the time domain. Experimental result verified the effective and feasibility of the proposed approach; the distribution of inner defects can be shown with a higher resolution than other NDT methods when robotic orientation is correct at each point of scanning trajectory. Furthermore, the feature signals can be tracked more accurately during the ultrasonic signal processing if the ultrasonic distance was considered as a calibration coefficient of positional matrix. The proposed ultrasonic adaptive detection is adapted to complex geometric structure with a minimum resolution of equivalent diameter of the inner flaw being 0.15 millimeters.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3